隐私计算,如何撬动金融场景千亿级收入?
2021-05-21 18:00
这一市场正处于爆发的前夜。据KPMG《隐私计算行业研究报告》预测,隐私计算国内市场规模将快速发展,三年后技术服务营收有望触达100-200亿人民币的空间,甚至撬动千亿级的数据平台运营收入空间。
华泰创新总经理晋海博判断,“之前大家对隐私计算的名词进行定义,对各种技术方案进行论证,现在行业进入注重技术性能、安全统一的阶段,未来进入互联互通的阶段,隐私计算应用的市场空间是目前的百倍级别。”
独立创业公司的优势在于中立性,以及根据客户需求开展定制化服务。不少投资机构已布局这一领域,包括红杉资本、IDG、基石资本等,相关创业公司的融资阶段从天使轮到A、B轮不等;垂直行业的机构主要为产业背景的公司,优势在于应用能力;互联网大厂则拥有丰富的数据生态和应用组件,微众银行、腾讯、蚂蚁、百度、字节跳动都已开发相关产品,应用于金融、电商等领域。
互联网大厂腾讯和顺德区政府建立了一套基于联邦学习的普惠金融平台,腾讯负责建模,融合政府政务数据、申请企业数据、银行业务数据,建立实时进件分析和风险控制模型。
香港人工智能与机器人学会理事长、香港科技大学讲席教授杨强表示:“在营销和广告领域,针对轨迹数据、客户风险数据、营销数据、转化数据等不同数据,通过统一的联邦学习平台串联起来,可用作人群洞察、用户分层和推荐等等。联合不同的数据级,建立不同的服务机器人,比如语音机器人,内呼、外呼机器人,作息助手和智能培训。”
在金融等场景的商业化过程中,据KPMG《隐私计算行业研究报告》统计,主要有四种营收方式:销售模式,收取一次性技术系统搭建费;服务模式,收取年度系统维护和服务费用;调用模式,收取数据使用费,这部分费用归属于数据方;分润模式,根据业务运行的效果获取收益分成。
钛媒体编辑丨孙骋